数学 III

第6章 「積分法の応用」

4. 媒介変数表示された 曲線と面積

hm3-6-4

(pdf ファイル)

學介質數是示された曲線

媒介変数表示

$$x = f(t), \quad y = g(t)$$

によって定義される関数の積分 $\int y \ dx$ は、置換積分法を用いて、

$$\int y \ dx = \int y \frac{dx}{dt} \ dt$$

のように、<u>健介変数を積分変数</u>にとって計算することができる。

少ずイクロイドで囲まれた部分の回意

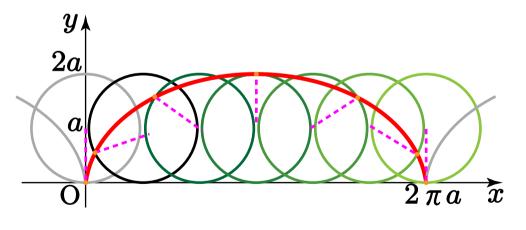
例題

a を正の定数として、媒介変数表示

$$x=a(heta-\sin heta),\ y=a(1-\cos heta) \ (0\le heta\le2\pi)$$

の表す曲線とx軸が囲む部分の面積Sを求めよ.

この曲線を 学子の回子ドという. サイクロイドは, 定直線に接しながら, すべらずに転がる円の用上の1点が描く軌跡である.



$w=a(\theta-\sin\theta), y=a(1-\cos\theta)$

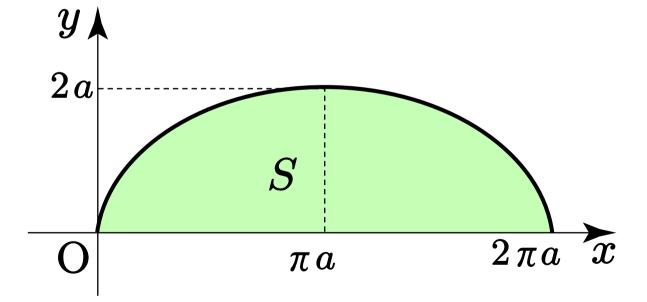
【解】x,y を θ の関数と見て微分すると,

$$x' = \frac{dx}{d\theta} = a(1 - \cos \theta)$$
 $y' = \frac{dy}{d\theta} = a \sin \theta$

したがって、x, y の増減は、以下のようになる.

$ \theta $	0	• • •	• • •	2π
x'				
x				
y'				
$oldsymbol{y}$				

曲線の概形



求める面積は, $S=\int_0^{2\pi a}y\;dx$ という積分で表されるが,置換積分法を用いて,積分変数を θ に換えると,

$$S = \int$$

