数学 III

第3章 「微分法」

16. 媒介変数表示と導関数

hm3-3-16

(pdf ファイル)

微分の理論

- 微分の基礎概念 微分係数,導関数 微分可能性,高次導関数
- 微分の基本公式
 - (1) 微分の線型性
 - (2) 積の微分法
 - (3) 商の微分法
 - (4) 合成関数の微分法
 - (5) 逆関数の微分法
 - (6) 対数微分法
 - (7) 陰関数の微分法
 - (8) 媒介変数表示された 関数の微分法

計算としての微分

- べき乗関数
 - $(1) (x^n)' (n: 負でない整数)$
 - $(2) (x^n)' (n: 負の整数)$
 - $(3) \; (x^{rac{1}{m}})'(m:$ 正の整数)
 - $(4) (x^r)' (r:有理数)$
 - $(5) (x^{\alpha})' (\alpha : 実数)$
- 三角関数

 $(\sin x)', (\cos x)', (\tan x)'$

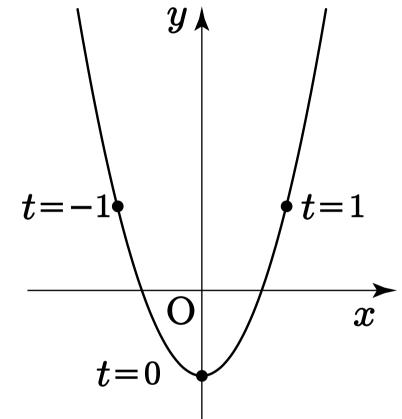
ullet 対数関数・指数関数 $(\log_a x)', (a^x)'$

の館の媒介変数表示に向って

xy 平面上を動く点 P があり、その座標 (x, y) が、1 つの変数 t を用いて

$$x=2t, \quad y=4t^2-2$$
で表されているとする.

たとえば、t=-1,0,1 とすると、P の座標がそれぞれ (、),(、),(、)

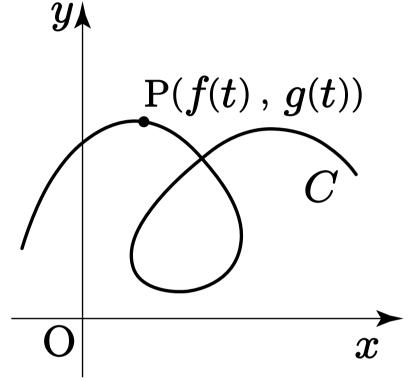


変数 t をすべての実数値をとるように連続的に変化させていくと、これに対応して点 P が平面上に曲線を描く.

回線の媒介変数表示

一般に、曲線C上の点の座標(x, y)が変数tの関数として u_{λ}

 $x = f(t), y = g(t) \cdots (*)$ で与えられているとき、(*)を、tを懸命変数とするCの概念変数を示という.



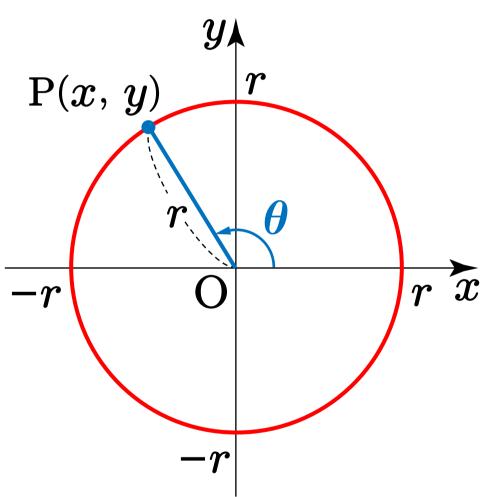
- 健康 媒介変数は parameter[英] の訳語である.
- x=2t, $y=4t^2-2$ は,放物線 $y=x^2-2$ の媒介変数表示の一つである.

の媒介変数表示

円 $C: x^2 + y^2 = r^2$ (r は正の定数) 上の点 P の座標を (x, y) とし、動径 OP の表す角を θ とすれば、三角関数の定義から y_{λ}

$$\left\{egin{array}{l} x=r\cos heta \ y=r\sin heta \end{array}
ight.$$

これは、 θ を媒介変数とする円Cの媒介変数表示の一つである.



が突数で長された関数の微分公式

媒介変数表示 x=f(t),y=g(t) によって、xから yへの関数が与えられる場合、合成関数と逆関数の微分法から、 $\frac{dx}{dt} \neq 0$ のとき、

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{dy}{dt} \cdot \frac{1}{\frac{dx}{dt}}$$

$$x=f(t),\;y=g(t)$$
 のとき,

$$rac{dy}{dx} = rac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}} = rac{g'(t)}{f'(t)}$$
 ただし、 $f'(t)
eq 0$

の場合変数表示された関数の導関数の例

ightrightarrow x, yの関係がtを媒介変数として

$$x = 2t - 1, \qquad y = 4t^2 - 2$$

で与えられているとき、

$$rac{dy}{dx} = rac{rac{dy}{dt}}{rac{dx}{dt}} =$$

ightrightarrow x, yの関係がhetaを媒介変数として

$$x = 3\cos\theta$$
, $y = 3\sin\theta$

で与えられているとき,

$$rac{dy}{dx} = rac{rac{dy}{d heta}}{rac{dx}{d heta}}$$