数学 III

第3章 「微分法」

15. だ円と双曲線

hm3-3-15

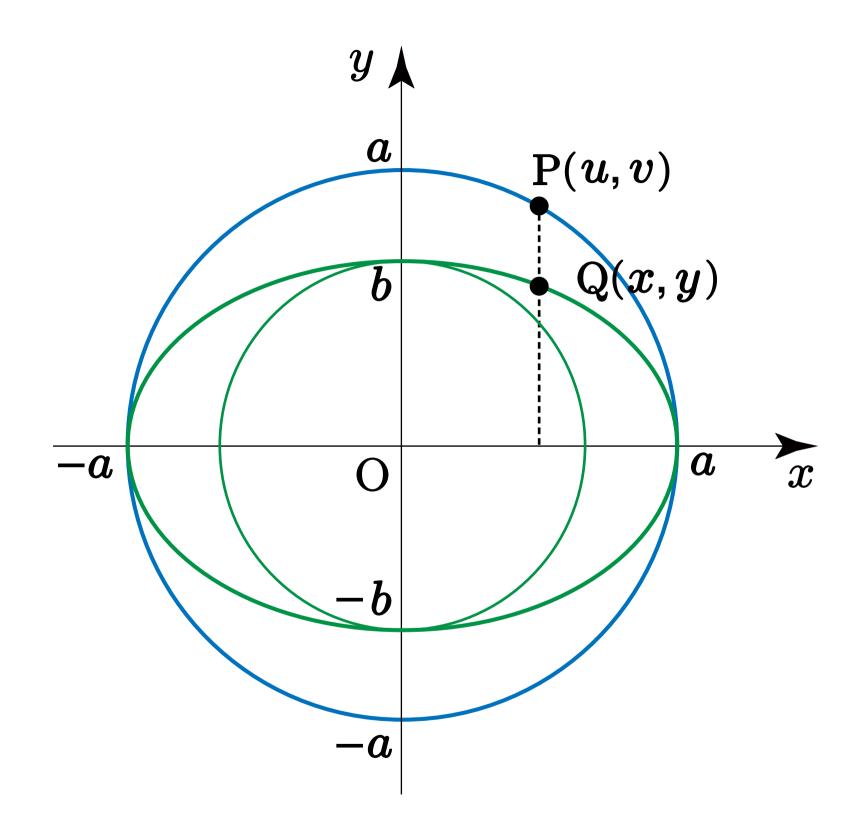
(pdf ファイル)

で形(伸縮)された円としての精門

a,b を正の定数とする. 原点を中心とする半径 a の 円 C を, x 軸をもとにしてy 軸方向に $\frac{b}{a}$ 倍 した曲線 \mathcal{E} について考えてみよう.

円C上の点を $\mathrm{P}(u,\,v)$ とすると, $u^2+v^2=a^2$ \cdots (*)

x軸をもとにしてy軸方向に $\frac{b}{a}$ 倍したとき,点 $\mathbf{P}(u,\ v)$ が $\mathbf{Q}(x,\ y)$ に移るとすれば,x= ,y= すなわち u= ,v= よって,



(ellipse)

一般に、a, b が正の定数のとき、方程式

$$rac{m{x^2}}{m{a^2}} + rac{m{y^2}}{m{b^2}} = 1$$

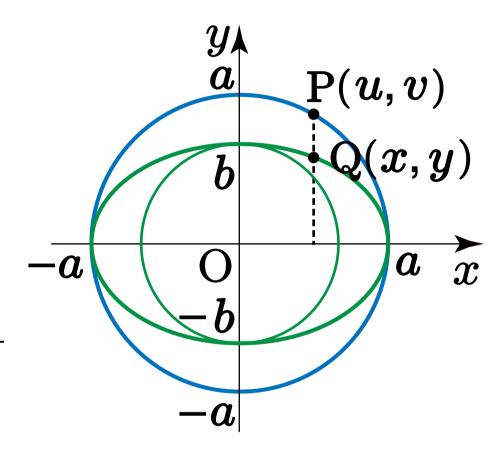
が表す曲線を 纜門 という.

この楕円は,円

$$x^2 + y^2 = a^2$$

をx軸をもとにy軸方向に $\frac{b}{a}$ 倍した曲線であるとともに、円

 $x^2 + y^2 = b^2$



をy軸をもとにx軸方向に $\frac{a}{b}$ 倍した曲線でもある.

道門についての陰関数の微分

方程式
$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$$
 の両辺を x で微分するとより, $\dfrac{dy}{dx}=$

楕円
$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$$
 上の点 $(x_1,\ y_1)$ (ただし, $y_1
eq 0$) における微分係数の値は である.

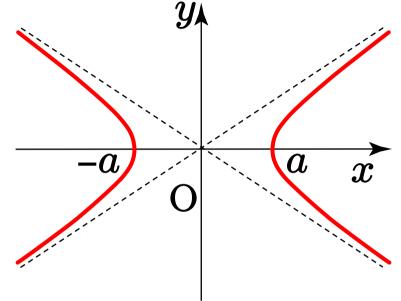
(hyperbola) 观曲線 (hyperbola)

a, b を正の定数とするとき、方程式

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

で表される曲線を 図曲線 という.

これは,
$$rac{u^2}{a^2} - rac{y^2}{b^2} = 0$$
 すなわち



 $y = \pm \frac{b}{a}x$ の表す2直線を漸近線にもつ.

双曲線
$$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$$
 上の点 $(x_1,\ y_1)$ (ただし, $y_1
eq 0$) における微分係数の値は である.